Lesson 3: Numbers in Exponential Form Raised to a Power

Classwork

For any number x and any positive integers m and n,

because

$$(x^{m})^{n} = \underbrace{(x \cdot x \cdots x)^{n}}_{m \text{ times}}$$

$$= \underbrace{(x \cdot x \cdots x)}_{m \text{ times}} \times \cdots \times \underbrace{(x \cdot x \cdots x)}_{m \text{ times}} \quad (n \text{ times})$$

 $(x^m)^n = x^{mn}$

Exercise 1

Exercise 3

 $(15^3)^9 =$

 $(3.4^{17})^4 =$

Exercise 2

Exercise 4

 $((-2)^5)^8 =$

Let s be a number.

 $(s^{17})^4 =$

Exercise 5

Sarah wrote that $(3^5)^7 = 3^{12}$. Correct her mistake. Write an exponential expression using a base of 3 and exponents of 5, 7, and 12 that would make her answer correct.

Exercise 6

A number y satisfies $y^{24} - 256 = 0$. What equation does the number $x = y^4$ satisfy?

For any numbers x and y, and positive integer n,

because

$$(xy)^n = x^n y^n$$

$$(xy)^{n} = \underbrace{(xy)\cdots(xy)}_{n \text{ times}}$$

$$= \underbrace{(x \cdot x \cdots x)}_{n \text{ times}} \cdot \underbrace{(y \cdot y \cdots y)}_{n \text{ times}}$$

$$= x^{n}y^{n}$$

Exercise 7

$$(11 \times 4)^9 =$$

Let x be a number.

$$(5x)^7 =$$

Exercise 8

$$(3^2 \times 7^4)^5 =$$

Let x and y be numbers.

$$(5xy^2)^7 =$$

Exercise 9

Exercise 12

Let a, b, and c be numbers.

Let
$$a$$
, b , and c be numbers.

$$(3^2a^4)^5 =$$

$$(a^2bc^3)^4 =$$

Exercise 13

Let x and y be numbers, $y \neq 0$, and let n be a positive integer. How is $\left(\frac{x}{y}\right)^n$ related to x^n and y^n ?

Problem Set

- 1. Show (prove) in detail why $(2 \cdot 3 \cdot 4)^4 = 2^4 3^4 4^4$.
- 2. Show (prove) in detail why $(xyz)^4 = x^4y^4z^4$ for any numbers x, y, z.
- 3. Show (prove) in detail why $(xyz)^n = x^n y^n z^n$ for any numbers x, y, z, and for any positive integer n.